API Reference
ServiceClient

ServiceClient for Tinker API.

ServiceClient Objects

class ServiceClient(TelemetryProvider)

The ServiceClient is the main entry point for the Tinker API. It provides methods to:

  • Query server capabilities and health status
  • Generate TrainingClient instances for model training workflows
  • Generate SamplingClient instances for text generation and inference
  • Generate RestClient instances for REST API operations like listing weights

Args: **kwargs: advanced options passed to the underlying HTTP client, including API keys, headers, and connection settings.

Example:

# Near instant
client = ServiceClient()
 
# Takes a moment as we initialize the model and assign resources
training_client = client.create_lora_training_client(base_model="Qwen/Qwen3-8B")
 
# Near-instant
sampling_client = client.create_sampling_client(base_model="Qwen/Qwen3-8B")
 
# Near-instant
rest_client = client.create_rest_client()

get_server_capabilities

def get_server_capabilities() -> types.GetServerCapabilitiesResponse

Query the server's supported features and capabilities.

Returns:

  • GetServerCapabilitiesResponse with available models, features, and limits

Example:

capabilities = service_client.get_server_capabilities()
print(f"Supported models: {capabilities.supported_models}")
print(f"Max batch size: {capabilities.max_batch_size}")

get_server_capabilities_async

async def get_server_capabilities_async(
) -> types.GetServerCapabilitiesResponse

Async version of get_server_capabilities.

create_lora_training_client

def create_lora_training_client(
        base_model: str,
        rank: int = 32,
        seed: int | None = None,
        train_mlp: bool = True,
        train_attn: bool = True,
        train_unembed: bool = True,
        user_metadata: dict[str, str] | None = None) -> TrainingClient

Create a TrainingClient for LoRA fine-tuning.

Args:

  • base_model: Name of the base model to fine-tune (e.g., "Qwen/Qwen2.5-7B")
  • rank: LoRA rank controlling the size of adaptation matrices (default 32)
  • seed: Random seed for initialization. None means random seed.
  • train_mlp: Whether to train MLP layers (default True)
  • train_attn: Whether to train attention layers (default True)
  • train_unembed: Whether to train unembedding layers (default True)
  • user_metadata: Optional metadata to attach to the training run

Returns:

  • TrainingClient configured for LoRA training

Example:

training_client = service_client.create_lora_training_client(
    base_model="Qwen/Qwen2.5-7B",
    rank=16,
    train_mlp=True,
    train_attn=True
)
# Now use training_client.forward_backward() to train

create_lora_training_client_async

async def create_lora_training_client_async(
        base_model: str,
        rank: int = 32,
        seed: int | None = None,
        train_mlp: bool = True,
        train_attn: bool = True,
        train_unembed: bool = True,
        user_metadata: dict[str, str] | None = None) -> TrainingClient

Async version of create_lora_training_client.

create_training_client_from_state

def create_training_client_from_state(
        path: str,
        user_metadata: dict[str, str] | None = None) -> TrainingClient

Create a TrainingClient from saved model weights.

This loads only the model weights, not optimizer state. To also restore optimizer state (e.g., Adam momentum), use create_training_client_from_state_with_optimizer.

Args:

  • path: Tinker path to saved weights (e.g., "tinker://run-id/weights/checkpoint-001")
  • user_metadata: Optional metadata to attach to the new training run

Returns:

  • TrainingClient loaded with the specified weights

Example:

# Resume training from a checkpoint (weights only, optimizer resets)
training_client = service_client.create_training_client_from_state(
    "tinker://run-id/weights/checkpoint-001"
)
# Continue training from the loaded state

create_training_client_from_state_async

async def create_training_client_from_state_async(
        path: str,
        user_metadata: dict[str, str] | None = None) -> TrainingClient

Async version of create_training_client_from_state.

create_training_client_from_state_with_optimizer

def create_training_client_from_state_with_optimizer(
        path: str,
        user_metadata: dict[str, str] | None = None) -> TrainingClient

Create a TrainingClient from saved model weights and optimizer state.

This is similar to create_training_client_from_state but also restores optimizer state (e.g., Adam momentum), which is useful for resuming training exactly where it left off.

Args:

  • path: Tinker path to saved weights (e.g., "tinker://run-id/weights/checkpoint-001")
  • user_metadata: Optional metadata to attach to the new training run

Returns:

  • TrainingClient loaded with the specified weights and optimizer state

Example:

# Resume training from a checkpoint with optimizer state
training_client = service_client.create_training_client_from_state_with_optimizer(
    "tinker://run-id/weights/checkpoint-001"
)
# Continue training with restored optimizer momentum

create_training_client_from_state_with_optimizer_async

async def create_training_client_from_state_with_optimizer_async(
        path: str,
        user_metadata: dict[str, str] | None = None) -> TrainingClient

Async version of create_training_client_from_state_with_optimizer.

create_sampling_client

def create_sampling_client(
        model_path: str | None = None,
        base_model: str | None = None,
        retry_config: RetryConfig | None = None) -> SamplingClient

Create a SamplingClient for text generation.

Args:

  • model_path: Path to saved model weights (e.g., "tinker://run-id/weights/checkpoint-001")
  • base_model: Name of base model to use (e.g., "Qwen/Qwen2.5-7B")
  • retry_config: Optional configuration for retrying failed requests

Returns:

  • SamplingClient configured for text generation

Raises: ValueError: If neither model_path nor base_model is provided

Example:

# Use a base model
sampling_client = service_client.create_sampling_client(
    base_model="Qwen/Qwen2.5-7B"
)
 
# Or use saved weights
sampling_client = service_client.create_sampling_client(
    model_path="tinker://run-id/weights/checkpoint-001"
)

create_sampling_client_async

async def create_sampling_client_async(
        model_path: str | None = None,
        base_model: str | None = None,
        retry_config: RetryConfig | None = None) -> SamplingClient

Async version of create_sampling_client.

create_rest_client

def create_rest_client() -> RestClient

Create a RestClient for REST API operations.

The RestClient provides access to various REST endpoints for querying model information, checkpoints, sessions, and managing checkpoint visibility.

Returns:

  • RestClient for accessing REST API endpoints

Example:

rest_client = service_client.create_rest_client()
 
# List checkpoints for a training run
checkpoints = rest_client.list_checkpoints("run-id").result()
 
# Get training run info
training_run = rest_client.get_training_run("run-id").result()
 
# Publish a checkpoint
rest_client.publish_checkpoint_from_tinker_path(
    "tinker://run-id/weights/checkpoint-001"
).result()