ServiceClient for Tinker API.
ServiceClient Objects
class ServiceClient(TelemetryProvider)The ServiceClient is the main entry point for the Tinker API. It provides methods to:
- Query server capabilities and health status
- Generate TrainingClient instances for model training workflows
- Generate SamplingClient instances for text generation and inference
- Generate RestClient instances for REST API operations like listing weights
Args: **kwargs: advanced options passed to the underlying HTTP client, including API keys, headers, and connection settings.
Example:
# Near instant
client = ServiceClient()
# Takes a moment as we initialize the model and assign resources
training_client = client.create_lora_training_client(base_model="Qwen/Qwen3-8B")
# Near-instant
sampling_client = client.create_sampling_client(base_model="Qwen/Qwen3-8B")
# Near-instant
rest_client = client.create_rest_client()get_server_capabilities
def get_server_capabilities() -> types.GetServerCapabilitiesResponseQuery the server's supported features and capabilities.
Returns:
GetServerCapabilitiesResponsewith available models, features, and limits
Example:
capabilities = service_client.get_server_capabilities()
print(f"Supported models: {capabilities.supported_models}")
print(f"Max batch size: {capabilities.max_batch_size}")get_server_capabilities_async
async def get_server_capabilities_async(
) -> types.GetServerCapabilitiesResponseAsync version of get_server_capabilities.
create_lora_training_client
def create_lora_training_client(
base_model: str,
rank: int = 32,
seed: int | None = None,
train_mlp: bool = True,
train_attn: bool = True,
train_unembed: bool = True,
user_metadata: dict[str, str] | None = None) -> TrainingClientCreate a TrainingClient for LoRA fine-tuning.
Args:
base_model: Name of the base model to fine-tune (e.g., "Qwen/Qwen2.5-7B")rank: LoRA rank controlling the size of adaptation matrices (default 32)seed: Random seed for initialization. None means random seed.train_mlp: Whether to train MLP layers (default True)train_attn: Whether to train attention layers (default True)train_unembed: Whether to train unembedding layers (default True)user_metadata: Optional metadata to attach to the training run
Returns:
TrainingClientconfigured for LoRA training
Example:
training_client = service_client.create_lora_training_client(
base_model="Qwen/Qwen2.5-7B",
rank=16,
train_mlp=True,
train_attn=True
)
# Now use training_client.forward_backward() to traincreate_lora_training_client_async
async def create_lora_training_client_async(
base_model: str,
rank: int = 32,
seed: int | None = None,
train_mlp: bool = True,
train_attn: bool = True,
train_unembed: bool = True,
user_metadata: dict[str, str] | None = None) -> TrainingClientAsync version of create_lora_training_client.
create_training_client_from_state
def create_training_client_from_state(
path: str,
user_metadata: dict[str, str] | None = None) -> TrainingClientCreate a TrainingClient from saved model weights.
This loads only the model weights, not optimizer state. To also restore optimizer state (e.g., Adam momentum), use create_training_client_from_state_with_optimizer.
Args:
path: Tinker path to saved weights (e.g., "tinker://run-id/weights/checkpoint-001")user_metadata: Optional metadata to attach to the new training run
Returns:
TrainingClientloaded with the specified weights
Example:
# Resume training from a checkpoint (weights only, optimizer resets)
training_client = service_client.create_training_client_from_state(
"tinker://run-id/weights/checkpoint-001"
)
# Continue training from the loaded statecreate_training_client_from_state_async
async def create_training_client_from_state_async(
path: str,
user_metadata: dict[str, str] | None = None) -> TrainingClientAsync version of create_training_client_from_state.
create_training_client_from_state_with_optimizer
def create_training_client_from_state_with_optimizer(
path: str,
user_metadata: dict[str, str] | None = None) -> TrainingClientCreate a TrainingClient from saved model weights and optimizer state.
This is similar to create_training_client_from_state but also restores optimizer state (e.g., Adam momentum), which is useful for resuming training exactly where it left off.
Args:
path: Tinker path to saved weights (e.g., "tinker://run-id/weights/checkpoint-001")user_metadata: Optional metadata to attach to the new training run
Returns:
TrainingClientloaded with the specified weights and optimizer state
Example:
# Resume training from a checkpoint with optimizer state
training_client = service_client.create_training_client_from_state_with_optimizer(
"tinker://run-id/weights/checkpoint-001"
)
# Continue training with restored optimizer momentumcreate_training_client_from_state_with_optimizer_async
async def create_training_client_from_state_with_optimizer_async(
path: str,
user_metadata: dict[str, str] | None = None) -> TrainingClientAsync version of create_training_client_from_state_with_optimizer.
create_sampling_client
def create_sampling_client(
model_path: str | None = None,
base_model: str | None = None,
retry_config: RetryConfig | None = None) -> SamplingClientCreate a SamplingClient for text generation.
Args:
model_path: Path to saved model weights (e.g., "tinker://run-id/weights/checkpoint-001")base_model: Name of base model to use (e.g., "Qwen/Qwen2.5-7B")retry_config: Optional configuration for retrying failed requests
Returns:
SamplingClientconfigured for text generation
Raises: ValueError: If neither model_path nor base_model is provided
Example:
# Use a base model
sampling_client = service_client.create_sampling_client(
base_model="Qwen/Qwen2.5-7B"
)
# Or use saved weights
sampling_client = service_client.create_sampling_client(
model_path="tinker://run-id/weights/checkpoint-001"
)create_sampling_client_async
async def create_sampling_client_async(
model_path: str | None = None,
base_model: str | None = None,
retry_config: RetryConfig | None = None) -> SamplingClientAsync version of create_sampling_client.
create_rest_client
def create_rest_client() -> RestClientCreate a RestClient for REST API operations.
The RestClient provides access to various REST endpoints for querying model information, checkpoints, sessions, and managing checkpoint visibility.
Returns:
RestClientfor accessing REST API endpoints
Example:
rest_client = service_client.create_rest_client()
# List checkpoints for a training run
checkpoints = rest_client.list_checkpoints("run-id").result()
# Get training run info
training_run = rest_client.get_training_run("run-id").result()
# Publish a checkpoint
rest_client.publish_checkpoint_from_tinker_path(
"tinker://run-id/weights/checkpoint-001"
).result()